Interpretable Calibration of Crystal Plasticity Model Using a Bayesian Surrogate-Assisted Genetic Algorithm

Author:

Yang Shuaiyi,Tang Xuefeng,Deng Lei,Gong PanORCID,Zhang Mao,Jin Junsong,Wang Xinyun

Abstract

The accurate calibration of material parameters in crystal plasticity models is essential for applying crystal plasticity (CP) simulations. Identifying these parameters usually requires unfeasible single-crystal experiments or expensive time costs due to the use of traditional genetic algorithm (GA) optimization. This study proposed an efficient and interpretable method for calibrating the constitutive parameters with macroscopic mechanical tests. This approach utilized the Bayesian neural network (BNN)-based surrogate-assisted GA (SGA) optimization method to identify a group of constitutive parameters that can reproduce the experimental stress–strain curve and crystallographic orientation by crystal plasticity simulation. The proposed approach was performed on the calibration of typical high-entropy alloy material parameters in two different CP models. The use of the surrogate model reduces the call count of simulation in the parameter searching process and speeds up the calibration significantly. With the help of infill sampling, the accuracy of this optimization method is consistent with the CP simulation and not limited by the accuracy of the surrogate model. Another merit of this method is that the pattern that the BNN surrogate found in the model parameters can be interpreted with its integrated gradients, which helps us to understand the relationship between constitutive parameters and the output mechanical response. The interpretation of BNN can guide further experiment design to decouple particular parameters and add constraints provided by the attached experiment or prior knowledge.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3