Synergism between B and Nb Improves Fire Resistance in Microalloyed Steels

Author:

Ferreira Pedro PiresORCID,Carvalho Felipe Moreno,Ariza-Echeverri Edwan AndersonORCID,Delfino Pedro Meirelles,Bauri Luiz Felipe,Ferreira Andrei Marx,Braga Ana Paola,Eleno Luiz Tadeu Fernandes,Goldenstein Hélio,Tschiptschin André PauloORCID

Abstract

The long exposure of structural components to high temperatures (above 600 °C) negatively changes their mechanical properties, severely compromising the structural capacity of buildings and other structures in which safety is a primary concern. Developing new cheaper fire-resistant steels with better mechanical and thermal performances represents a challenging, cutting-edge materials science and engineering research topic. Alloying elements such as Nb and Mo are generally used to improve the strength at both room and high temperatures due to the formation of precipitates and harder microconstituents. This study shows that adding small amounts of boron in Nb-microalloyed fire-resistant steels may be crucial in maintaining mechanical properties at high temperatures. The widely used 66% yield-strength criteria for fire resistance was achieved at ≈574 °C for the B-added alloys. In contrast, for those without boron, this value reached ≈460 °C, representing a remarkable boron-induced mechanical strengthening enhancement. First-principles quantum mechanics calculations demonstrate that boron additions can lower 11.7% of the vacancy formation energy compared to pure ferrite. Furthermore, for Nb-added steels, the reduction in the vacancy formation energy may reach 33.2%, suggesting that the boron-niobium combination could act as an effective pinning-based steel-strengthening agent due to the formation of B-induced higher-density vacancy-related crystalline defects, as well as other well-known steel strengthening mechanisms reported in the literature. Adding boron and niobium may, therefore, be essential in designing better structural alloys.

Funder

Companhia Brasileira de Metalurgia e Mineração

São Paulo Research Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3