Numerical Simulation of Multi-Physics Fields in Fused Magnesia Furnace

Author:

Jiang Tianchi,Zhang Weijun

Abstract

In this paper, a 3D transient multi-physical field model is developed to capture the complex processes inside a fused magnesia furnace. The multi-physics model integrates electromagnetism, thermodynamics, decomposition reactions, and flow. The three-phase submerged magnesia furnace includes an arc, magnesite ores, a melting pool, and a solidification ingot. For a more comprehensive analysis of the optimal design of industrial operations, the influence of the key index of electrode insertion depth on temperature and reaction is also discussed. The results show that the current density in the fused magnesia furnace is almost the same as the joule heat distribution, and there is an obvious area of low energy density affected by the skin effect, which leads to the waste of electric energy. The temperature at the center of the arc reaches 12,000 K, and the plasma areas formed at the end of the three electrodes are connected to each other to form a closed current path, which provides energy for the process of melting magnesia. The arc region is an ellipsoid with a length of ~30 mm and a diameter of ~49 mm. The decomposition reaction of magnesite mainly occurs in the arc area, and the radiation heat provided by the high-temperature arc is used as the heat source. There is almost no magnesite in the molten pool, and the molten pool only provides energy for the melting process of magnesia. When the electrode insertion depth is 0.4, 0.5, 0.6, and 0.7 m, the arc length is 0.049 m, 0.066 m, 0.068 m, and 0.059 m, respectively. According to the simulation results, there is an optimal electrode insertion depth.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference23 articles.

1. Development status and prospect of magnesium refractory materials in China;Chen;Refract. Ries,2013

2. Jiang, X. (2011). Study on New Energy Saving Technology of Fused Magnesia and Crystallization Process of Magnesite in Magnesite Smelting. [Master’s Thesis, Northeastern University].

3. Jiang, T., Zhang, W., and Liu, S. (2021). Performance Evaluation of a Full-Scale Fused Magnesia Furnace for MgO Production Based on Energy and Exergy Analysis. Energies, 15.

4. Radial temperature measurements of alternating current arcs;Bowman;J. Phys. D Appl. Phys.,1969

5. Numerical simulation and orthogonal analysis on coupled arc with molten pool for keyholing plasma arc weld-ing;Wu;Acta Metall. Sin.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3