Combining Digital Twin and Machine Learning for the Fused Filament Fabrication Process

Author:

Butt JavaidORCID,Mohaghegh Vahaj

Abstract

In this work, the feasibility of applying a digital twin combined with machine learning algorithms (convolutional neural network and random forest classifier) to predict the performance of PLA (polylactic acid or polylactide) parts is being investigated. These parts are printed using a low-cost desktop 3D printer based on the principle of fused filament fabrication. A digital twin of the extruder assembly has been created in this work. This is the component responsible for melting the thermoplastic material and depositing it on the print bed. The extruder assembly digital twin has been separated into three simulations, i.e., conjugate convective heat transfer, multiphase material melting, and non-Newtonian microchannel. The functionality of the physical extruder is controlled by a PID/PWM circuit, which has also been modelled within the digital twin to control the virtual extruder’s operation. The digital twin simulations were validated through experimentation and showed a good agreement. After validation, a variety of parts were printed using PLA at four different extrusion temperatures (180 °C, 190 °C, 200 °C, 210 °C) and ten different extrusion rates (ranging from 70% to 160%). Measurements of the surface roughness, hardness, and tensile strength of the printed parts were recorded. To predict the performance of the printed parts using the digital twin, a correlation was established between the temperature profile of the non-Newtonian microchannel simulation and the experimental results using the machine learning algorithms. To achieve this objective, a reduced order model (ROM) of the extruder assembly digital twin was developed to generate a training database. The database generated by the ROM (simulation results) was used as the input for the machine learning algorithms and experimental data were used as target values (classified into three categories) to establish the correlation between the digital twin output and performance of the physically printed parts. The results show that the random forest classifier has a higher accuracy compared to the convolutional neural network in categorising the printed parts based on the numerical simulations and experimental data.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3