WC-Based Cemented Carbides with High Entropy Alloyed Binders: A Review

Author:

Straumal Boris,Konyashin Igor

Abstract

Cemented carbides have belonged to the most important engineering materials since their invention in the 1920s. Commonly, they consist of hard WC grains embedded in a cobalt-based ductile binder. Recently, attempts have been made to substitute the cobalt using multicomponent alloys without a principal component (also known as high entropy alloys—HEAs). HEAs usually contain at least five components in more or less equal amounts. The substitution of a cobalt binder with HEAs can lead to the refinement of WC grains; it increases the hardness, fracture toughness, corrosion resistance and oxidation resistance of cemented carbides. For example, a hardness of 2358 HV, fracture toughness of 12.1 MPa.m1/2 and compression strength of 5420 MPa were reached for a WC-based cemented carbide with 20 wt.% of the equimolar AlFeCoNiCrTi HEA with a bcc lattice. The cemented carbide with 10 wt.% of the Co27.4Cr13.8Fe27.4Ni27.4Mo4 HEA with an fcc lattice had a hardness of 2141 HV and fracture toughness of 10.5 MPa.m1/2. These values are higher than those for the typical WC–10 wt.% Co composite. The substitution of Co with HEAs also influences the phase transitions in the binder (between the fcc, bcc and hcp phases). These phase transformations can be successfully used for the purposeful modifications of the properties of the WC-HEA cemented carbides. The shape of the WC/binder interfaces (e.g., their faceting–roughening) can influence the mechanical properties of cemented carbides. The most possible reason for such a behavior is the modification of conditions for dislocation glide as well as the development and growth of cracks at the last stages of deformation. Thus, the substitution of a cobalt binder with HEAs is very promising for the further development of cemented carbides.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference84 articles.

1. Cardarelli, F. (2008). Materials Handbook: A Concise Desktop Reference, Springer Science & Business Media.

2. Haynes, W.M. (2014). CRC Handbook of Chemistry and Physics, CRC Press.

3. Application of ASTM C1421 to WC-Co fracture toughness measurement;Swab;Int. J. Refract. Met. Hard Mater.,2016

4. Mechanical properties and rapid sintering of nanostructured WC and WC-TiAl3 hard materials by the pulsed current activated heating;Kwak;Int. J. Refract. Met. Hard Mater.,2016

5. Bulk ultrafine binderless WC prepared by spark plasma sintering;Huang;Scripta Mater.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3