Hydrogen Embrittlement Susceptibility of Corrosion-Resistant Spring Rod Used in High-Speed Railway

Author:

Li JinboORCID,Gao Xiuhua,Chen Hongwei,Wu Hongyan,Du Linxiu,Chen Chen

Abstract

The corrosion of spring steel is very important for vehicle safety. In this work, we conducted an experiment on multi-element micro-alloy composition design; the corrosion resistance of a 60Si2Mn spring was improved by adding Cr, Ni, Cu and other corrosion-resistant elements, and the corrosion resistance index (I) was increased from 3.21 to 8.62. Hydrogen embrittlement resistance was studied using a hydrogen permeation experiment and a slow strain rate tensile experiment. For this study, the following steps were performed: Firstly, the material composition was designed, and the experimental materials that met the experimental design were prepared according to the corresponding deformation and heat treatment process; secondly, the experimental materials were charged with hydrogen; and finally, conventional tensile testing, slow tensile testing and fracture morphology testing were carried out. A hydrogen permeation experiment was carried out for the materials. The result showed that, with the increase of hydrogen charging time, the hydrogen content of two steel samples increased, and the plasticity indexes such as elongation and reduction of the area appeared in three different stages which rapidly decreased, slowly declined, and then tended to balance. The uniform NbC nano precipitated phase can double the number of irreversible hydrogen traps (Nir) per unit volume, and decreased the effective hydrogen diffusion coefficient (Deff) from 1.135 × 10−10 to 6.036 × 10−11. It limited the free diffusion of hydrogen and made the immersed hydrogen harmless, thus improving the hydrogen embrittlement resistance of corrosion-resistant spring steel 60Si2Mn.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference61 articles.

1. Research on the Development Status and Trend of High speed Railway;Xie;High Speed Railw. Technol.,2021

2. Analysis on the cause of fatigue fracture of high-speed rail fastener spring bar;Xiao;Ind. Saf. Environ. Prot.,2021

3. Air quality in passenger cars of the ground railway transit system in Beijing, China;Li;Sci. Total Environ.,2006

4. EIS study of corrosion behaviour of organic coating/Dacromet composite systems;Liu;Electrochim. Acta,2005

5. Study on zinc impregnation process and anti-corrosion performance of elastic rod;Zhang;Railw. Build.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3