Affiliation:
1. Dam Safety Management Center, Satate Power Investment Corporation, Xi’an 710061, China
2. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
Abstract
The safety condition of concrete gravity dams is influenced by multiple factors, and assessing their safety solely based on a single factor is difficult to comprehensively evaluate. Therefore, this paper proposes a comprehensive modeling and analysis approach to assess dam safety by considering long-term temperature, stress, and strain monitoring data of actual concrete gravity dams. Firstly, the K-means clustering algorithm is utilized to classify the data. Then, the study area of the dam is meshed and three indicator evaluation values for all the elements are calculated. The other elements’ evaluation values can be obtained by the Inverse Distance Weighting (IDW) method. Finally, the analytic hierarchy process extended by the D numbers preference relation (D-AHP) method is applied to compute the weights of temperature, stress, and strain and evaluate the dam’s safety comprehensively. The effectiveness of this method is validated through application to specific engineering cases. The results demonstrate that compared to assessing methods considering only single factors, the comprehensive evaluation method proposed in this paper can more comprehensively and accurately reflect the actual safety condition of concrete gravity dams, providing important references for engineering decision-making.
Funder
National Key Research and Development Program of China
Shaanxi Natural Science Basic Research Program