Low-Flow Similarities between the Transboundary Lauter River and Rhine River at Maxau from 1956 to 2022 (France/Germany)

Author:

Liu Xiaowei1ORCID,de Jong Carmen1ORCID

Affiliation:

1. CNRS UMR 7362 Laboratoire Image Ville Environnement (LIVE), Faculty of Geography and Spatial Planning, University of Strasbourg, 67000 Strasbourg, France

Abstract

Climate change is increasing air temperatures and altering the precipitation and hydrological regime on a global scale. Challenges arise when assessing the impacts of climate change on the local scale for water resource management purposes, especially for low-mountain headwater catchments that not only serve as important water towers for local communities but also have distinct hydrological characteristics. Until now, no low-flow or hydrological drought studies had been carried out on the Lauter River. This study is unique in that it compares the Lauter River, a transboundary Rhine tributary, with a nearby station on the Rhine River just below its confluence at the French–German border. The Lauter catchment is a mostly natural, forested catchment; however, its water course has been influenced by past and present cultural activities. Climate change disturbances cascade through the hydrologic regime down to the local scale. As we are expecting more low-flow events, the decrease in water availability could cause conflicts between different water user groups in the Lauter catchment. However, the choice among different methods for identifying low-flow periods may cause confusion for local water resource managers. Using flow-rate time series of the Lauter River between 1956 and 2022, we compare for the first time three low-flow identification methods: the variable-threshold method (VT), the fixed-threshold method (FT), and the Standardized Streamflow Index (SSI). Similar analyses are applied and compared to the adjacent Maxau station on the Rhine River for the same time period. This study aims at (1) interpreting the differences amongst the various low-flow identification methods and (2) revealing the differences in low-flow characteristics of the Lauter catchment compared to that of the Rhine River. It appears that FT reacts faster to direct climate or anthropogenic impacts, whereas VT is more sensitive to indirect factors such as decreasing subsurface flow, which is typical for small headwater catchments such as the Lauter where flow dynamics react faster to flow disturbances. Abnormally low flow during the early spring in tributaries such as the Lauter can help predict low-flow conditions in the Rhine River during the following half-year and especially the summer. The results could facilitate early warning of hydrological droughts and drought management for water users in the Lauter catchment and further downstream along some of the Rhine.

Funder

European Regional Development Fund (ERDF), Interreg Upper Rhine Project RiverDiv

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3