The SF12 Well in LoRaWAN: Problem and End-Device-Based Solutions

Author:

Casals LluísORCID,Gomez CarlesORCID,Vidal RafaelORCID

Abstract

LoRaWAN has become a popular technology for the Internet of Things (IoT) device connectivity. One of the expected properties of LoRaWAN is high network scalability. However, LoRaWAN network performance may be compromised when even a relatively small number of devices use link-layer reliability. After failed frame delivery, such devices typically tend to reduce their physical layer bit rate by increasing their spreading factor (SF). This reaction increases channel utilization, which may further degrade network performance, even into congestion collapse. When this problem arises, all the devices performing reliable frame transmission end up using SF12 (i.e., the highest SF in LoRaWAN). In this paper, we identify and characterize the described network condition, which we call the SF12 Well, in a range of scenarios and by means of extensive simulations. The results show that by using alternative SF-management techniques it is possible to avoid the problem, while achieving a packet delivery ratio increase of up to a factor of 4.7.

Funder

Spanish Government, AEI/FEDER, EU

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3