Abstract
Ambisonics is a spatial audio technique appropriate for dynamic binaural rendering due to its sound field rotation and transformation capabilities, which has made it popular for virtual reality applications. An issue with low-order Ambisonics is that interaural level differences (ILDs) are often reproduced with lower values when compared to head-related impulse responses (HRIRs), which reduces lateralization and spaciousness. This paper introduces a method of Ambisonic ILD Optimization (AIO), a pre-processing technique to bring the ILDs produced by virtual loudspeaker binaural Ambisonic rendering closer to those of HRIRs. AIO is evaluated objectively for Ambisonic orders up to fifth order versus a reference dataset of HRIRs for all locations on the sphere via estimated ILD and spectral difference, and perceptually through listening tests using both simple and complex scenes. Results conclude AIO produces an overall improvement for all tested orders of Ambisonics, though the benefits are greatest at first and second order.
Funder
Google
Engineering and Physical Sciences Research Council
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献