Abstract
Visible Light Positioning (VLP) is widely recognized as a cost-effective solution for indoor positioning with increasing demand. However, the nonlinearity and highly complex relationship between three-dimensional world coordinate and two-dimensional image coordinate hinders the good performance of image-sensor-based VLP. Therefore, there is a need to develop effective VLP algorithms to locate the positioning terminal using image sensor. Besides, due to the high computational cost of image processing, most existing VLP systems do not achieve satisfactory performance in terms of real-time ability and positioning accuracy, both of which are significant for the performance of indoor positioning system. In addition, the accurate identification of the ID information of each LED (LED-ID) is important for positioning, because if the LED-ID is not recognized well, the positioning can only be achieved in a particular positioning unit and cannot be applied to a large scene with many LEDs. Therefore, an effective image-sensor-based double-light positioning system is proposed in this paper to solve the above problems. We also set up relevant experiments to test the performance of the proposed system, which utilizes the rolling shutter mechanism of the Complementary Metal Oxide Semiconductor (CMOS) image sensor. Machine learning was used to identify the LED-ID for better results. Simulation results show that the proposed double-light positioning system could deliver satisfactory performance in terms of both the real-time ability and the accuracy of positioning. Moreover, the proposed double-light positioning algorithm has low complexity and takes the symmetry problem of angle into consideration, which has never been considered before. Experiments confirmed that the proposed double-light positioning system can provide an accuracy of 3.85 cm with an average computing time of 56.28 ms, making it a promising candidate for future indoor positioning applications.
Funder
National Undergraduate Innovative and Entrepreneurial Training Program
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献