The Effect of the Precursor Solution’s Pretreatment on the Properties and Microstructure of the SCS Final Nanomaterials

Author:

Thoda Olga,Xanthopoulou Galina,Vekinis George,Chroneos AlexanderORCID

Abstract

Nanostructured nickel-based catalysts were produced by solution combustion synthesis and it was found that their properties and structure depended on the pretreatment of the precursor solution. X-ray diffraction, N2 adsorption, and an infrared high-speed camera were used to follow the various synthesis steps and to characterize the obtained catalysts, while their catalytic activity was determined in the hydrogenation of maleic acid. It was determined that the amount of water used and the heating of the precursor solution under mild stirring up to 70 °C influenced the nickel nitrate–glycine–water complexes that were formed in the precursor solution in the form of dendrites. These play a key role in the solution combustion synthesis (SCS) reaction mechanism and in particular in the formation of nickel-based catalysts. Understanding the interrelationships between the processing parameters and the ensuing powder properties allowed an efficient optimization of the catalytic performance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3