Affiliation:
1. College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
2. China Renewable Energy Engineering Institute, Beijing 100120, China
Abstract
The coordination of pumped storage and renewable energy is regarded as a promising avenue for renewable energy accommodation. Considering wind power output uncertainties, a collaborative capacity optimization method for wind–pumped hydro storage hybrid systems is proposed in this work. Firstly, considering the fluctuation of wind power generation caused by the natural seasonal weather and inherent uncertainties of wind power outputs, a combined method based on the generative adversarial network and K-means clustering algorithm is presented to construct wind power output scenarios. Then, a multi-objective wind–pumped storage system capacity optimization model is established with three objectives consisting of minimizing the levelized cost of energy, minimizing the net load peak–valley difference of regional power grids, and minimizing the power output deviation of hybrid systems. An inner and outer nested algorithm is proposed to obtain the Pareto frontiers based on the strength of the Pareto evolutionary algorithm II. Finally, the complementarity of wind power and pumped storage is illustrated through an analysis of numerical examples, and the advantages of variable-speed pumped storage in complementary operation with wind power over fixed-speed units are verified.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
China Postdoctoral Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献