A Lightweight Insulator Defect Detection Model Based on Drone Images

Author:

Lu Yang1ORCID,Li Dahua1,Li Dong1,Li Xuan1,Gao Qiang1,Yu Xiao1

Affiliation:

1. School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China

Abstract

With the continuous development and construction of new power systems, using drones to inspect the condition of transmission line insulators has become an inevitable trend. To facilitate the deployment of drone hardware equipment, this paper proposes IDD-YOLO (Insulator Defect Detection-YOLO), a lightweight insulator defect detection model. Initially, the backbone network of IDD-YOLO employs GhostNet for feature extraction. However, due to the limited feature extraction capability of GhostNet, we designed a lightweight attention mechanism called LCSA (Lightweight Channel-Spatial Attention), which is combined with GhostNet to capture features more comprehensively. Secondly, the neck network of IDD-YOLO utilizes PANet for feature transformation and introduces GSConv and C3Ghost convolution modules to reduce redundant parameters and lighten the network. The head network employs the YOLO detection head, incorporating the EIOU loss function and Mish activation function to optimize the speed and accuracy of insulator defect detection. Finally, the model is optimized using TensorRT and deployed on the NVIDIA Jetson TX2 NX mobile platform to test the actual inference speed of the model. The experimental results demonstrate that the model exhibits outstanding performance on both the proprietary ID-2024 insulator defect dataset and the public SFID insulator dataset. After optimization with TensorRT, the actual inference speed of the IDD-YOLO model reached 20.83 frames per second (FPS), meeting the demands for accurate and real-time inspection of insulator defects by drones.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin Municipality

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3