CrackScopeNet: A Lightweight Neural Network for Rapid Crack Detection on Resource-Constrained Drone Platforms

Author:

Zhang Tao1ORCID,Qin Liwei1,Zou Quan1,Zhang Liwen1,Wang Rongyi1,Zhang Heng1

Affiliation:

1. College of Computer and Information Science College of Software, Southwest University, Chongqing 400715, China

Abstract

Detecting cracks during structural health monitoring is crucial for ensuring infrastructure safety and longevity. Using drones to obtain crack images and automate processing can improve the efficiency of crack detection. To address the challenges posed by the limited computing resources of edge devices in practical applications, we propose CrackScopeNet, a lightweight segmentation network model that simultaneously considers local and global crack features while being suitable for deployment on drone platforms with limited computational power and memory. This novel network features a multi-scale branch to improve sensitivity to cracks of varying sizes without substantial computational overhead along with a stripe-wise context attention mechanism to enhance the capture of long-range contextual information while mitigating the interference from complex backgrounds. Experimental results on the CrackSeg9k dataset demonstrate that our method leads to a significant improvement in prediction performance, with the highest mean intersection over union (mIoU) scores reaching 82.12%, and maintains a lightweight architecture with only 1.05 M parameters and 1.58 G floating point operations (FLOPs). In addition, the proposed model excels in inference speed on edge devices without a GPU thanks to its low FLOPs. CrackScopeNet contributes to the development of efficient and effective crack segmentation networks suitable for practical structural health monitoring applications using drone platforms.

Funder

Chongqing Institute of Geology and Mineral Resources

2024 Key Technology Project of Chongqing Municipal Education Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3