The Distributed Adaptive Bipartite Consensus Tracking Control of Networked Euler–Lagrange Systems with an Application to Quadrotor Drone Groups

Author:

Li Zhiqiang123ORCID,He Huiru123ORCID,Han Chenglin123ORCID,Lin Boxian123ORCID,Shi Mengji123ORCID,Qin Kaiyu123ORCID

Affiliation:

1. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, Chengdu 611731, China

3. National Laboratory on Adaptive Optics, Chengdu 610209, China

Abstract

Actuator faults and external disturbances, which are inevitable due to material fatigue, operational wear and tear, and unforeseen environmental impacts, cause significant threats to the control reliability and performance of networked systems. Therefore, this paper primarily focuses on the distributed adaptive bipartite consensus tracking control problem of networked Euler–Lagrange systems (ELSs) subject to actuator faults and external disturbances. A robust distributed control scheme is developed by combining the adaptive distributed observer and neural-network-based tracking controller. On the one hand, a new positive definite diagonal matrix associated with an asymmetric Laplacian matrix is constructed in the distributed observer, which can be used to estimate the leader’s information. On the other hand, neural networks are adopted to approximate the lumped uncertainties composed of unknown matrices and external disturbances in the follower model. The adaptive update laws are designed for the unknown parameters in neural networks and the actuator fault factors to ensure the boundedness of estimation errors. Finally, the proposed control scheme’s effectiveness is validated through numerical simulations using two types of typical ELS models: two-link robot manipulators and quadrotor drones. The simulation results demonstrate the robustness and reliability of the proposed control approach in the presence of actuator faults and external disturbances.

Funder

Fundamental Research Funds for the Central Universities

Wuhu Science and Technology Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3