Joint Resource Allocation Optimization in Space–Air–Ground Integrated Networks

Author:

Xu Zhan12,Yu Qiangwei12,Yang Xiaolong12

Affiliation:

1. Key Laboratory of Information and Communication Systems, Ministry of Information Industry, Beijing 100101, China

2. Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100101, China

Abstract

A UAV-assisted space–air–ground integrated network (SAGIN) can provide communication services for remote areas and disaster-stricken regions. However, the increasing types and numbers of ground terminals (GTs) have led to the explosive growth of communication data volume, which is far from meeting the communication needs of ground users. We propose a mobile edge network model that consists of three tiers: satellites, UAVs, and GTs. In this model, UAVs and satellites deploy edge servers to deliver services to GTs. GTs with limited computing capabilities can upload computation tasks to UAVs or satellites for processing. Specifically, we optimize association control, bandwidth allocation, computation task allocation, caching decisions, and the UAV’s position to minimize task latency. However, the proposed joint optimization problem is complex, and it is difficult to solve. Hence, we utilize Block Coordinate Descent (BCD) and introduce auxiliary variables to decompose the original problem into different subproblems. These subproblems are then solved using the McCormick envelope theory, the Successive Convex Approximation (SCA) method, and convex optimization techniques. The simulation results extensively illustrate that the proposed solution dramatically decreases the overall latency when compared with alternative benchmark schemes.

Funder

National Key Research and Development Program

R&D Program of Beijing Municipal Education Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3