Affiliation:
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China
2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China
Abstract
In contrast to rotorcraft, fixed-wing unmanned aerial vehicles (UAVs) encounter a unique challenge in path planning due to the necessity of accounting for the turning radius constraint. This research focuses on coverage path planning, aiming to determine optimal trajectories for fixed-wing UAVs to thoroughly explore designated areas of interest. To address this challenge, the Linear Programming—Fuzzy C-Means with Pigeon-Inspired Optimization algorithm (LP-FCMPIO) is proposed. Initially considering the turning radius constraint, a linear-programming-based model for fixed-wing UAV coverage path planning is established. Subsequently, to partition multiple areas effectively, an improved fuzzy clustering algorithm is introduced. Employing the pigeon-inspired optimization algorithm as the final step, an approximately optimal solution is sought. Simulation experiments demonstrate that the LP-FCMPIO, when compared to traditional FCM, achieves a more balanced clustering effect. Additionally, in contrast to traditional PIO, the planned flight paths display improved coverage of task areas, with an approximately 27.5% reduction in the number of large maneuvers. The experimental results provide validation for the effectiveness of the proposed algorithm.
Funder
Aeronautical Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献