Enhancing Urban Mobility through Traffic Management with UAVs and VLC Technologies

Author:

Garau Guzman Javier1,Baeza Victor Monzon2ORCID

Affiliation:

1. Department of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, 08018 Barcelona, Spain

2. SigCom Group in SnT, University of Luxembourg, L-1855 Luxembourg, Luxembourg

Abstract

This paper introduces a groundbreaking approach to transform urban mobility by integrating Unmanned Aerial Vehicles (UAVs) and Visible Light Communication (VLC) technologies into traffic management systems within smart cities. With the continued growth of urban populations, the escalating traffic density in large cities poses significant challenges to the daily mobility of citizens, rendering traditional ground-based traffic management methods increasingly inadequate. In this context, UAVs provide a distinctive perspective for real-time traffic monitoring and congestion detection using the YOLO algorithm. Through image capture and processing, UAVs can rapidly identify congested areas and transmit this information to ground-based traffic lights, facilitating dynamic traffic control adjustments. Moreover, VLC establishes a communication link between UAVs and traffic lights that complements existing RF-based solutions, underscoring visible light’s potential as a reliable and energy-efficient communication medium. In addition to integrating UAVs and VLC, we propose a new communication protocol and messaging system for this framework, enhancing its adaptability to varying traffic flows. This research represents a significant stride toward developing more efficient, sustainable, and resilient urban transportation systems.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3