Military Image Captioning for Low-Altitude UAV or UGV Perspectives

Author:

Pan Lizhi1ORCID,Song Chengtian1ORCID,Gan Xiaozheng1ORCID,Xu Keyu1ORCID,Xie Yue2

Affiliation:

1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Science and Technology on Electromechanical Dynamic Control Laboratory, Xi’an 710065, China

Abstract

Low-altitude unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), which boast high-resolution imaging and agile maneuvering capabilities, are widely utilized in military scenarios and generate a vast amount of image data that can be leveraged for textual intelligence generation to support military decision making. Military image captioning (MilitIC), as a visual-language learning task, provides innovative solutions for military image understanding and intelligence generation. However, the scarcity of military image datasets hinders the advancement of MilitIC methods, especially those based on deep learning. To overcome this limitation, we introduce an open-access benchmark dataset, which was termed the Military Objects in Real Combat (MOCO) dataset. It features real combat images captured from the perspective of low-altitude UAVs or UGVs, along with a comprehensive set of captions. Furthermore, we propose a novel encoder–augmentation–decoder image-captioning architecture with a map augmentation embedding (MAE) mechanism, MAE-MilitIC, which leverages both image and text modalities as a guiding prefix for caption generation and bridges the semantic gap between visual and textual data. The MAE mechanism maps both image and text embeddings onto a semantic subspace constructed by relevant military prompts, and augments the military semantics of the image embeddings with attribute-explicit text embeddings. Finally, we demonstrate through extensive experiments that MAE-MilitIC surpasses existing models in performance on two challenging datasets, which provides strong support for intelligence warfare based on military UAVs and UGVs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3