Affiliation:
1. Institute of Automation Technology, Helmut Schmidt University/University of the Federal Armed Forces Hamburg, 22043 Hamburg, Germany
Abstract
Automation enhances the capabilities of unmanned aerial vehicles (UAVs) by enabling self-determined behavior, while reducing the need for extensive human involvement. Future concepts envision a single human operator commanding multiple autonomous UAVs with minimal supervision. Despite advances in automation, there remains a demand for a “human in command” to assume overall responsibility, driven by concerns about UAV safety and regulatory compliance. In response to these challenges, a method for runtime verification of UAVs using a knowledge-based system is introduced. This method empowers human operators to identify unsafe behavior without assuming full control of the UAV. Aspects of automated formalization, updating and processing of knowledge elements at runtime, coupled with an automatic reasoning process, are considered. The result is an ontology-based approach for runtime verification, addressing the growing complexity of UAVs and the need to ensure safety in the context of evolving aviation regulations.
Funder
Digitalization and Technology Research Center of the Bundeswehr