IMUC: Edge–End–Cloud Integrated Multi-Unmanned System Payload Management and Computing Platform

Author:

Tang Jie12,Zhong Ruofei12ORCID,Zhang Ruizhuo12,Zhang Yan12

Affiliation:

1. College of Resources, Environment and Tourism, Capital Normal University, Beijing 100048, China

2. Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Capital Normal University, Beijing 100048, China

Abstract

Multi-unmanned systems are primarily composed of unmanned vehicles, drones, and multi-legged robots, among other unmanned robotic devices. By integrating and coordinating the operation of these robotic devices, it is possible to achieve collaborative multitasking and autonomous operations in various environments. In the field of surveying and mapping, the traditional single-type unmanned device data collection mode is no longer sufficient to meet the data acquisition tasks in complex spatial scenarios (such as low-altitude, surface, indoor, underground, etc.). Faced with the data collection requirements in complex spaces, employing different types of robots for collaborative operations is an important means to improve operational efficiency. Additionally, the limited computational and storage capabilities of unmanned systems themselves pose significant challenges to multi-unmanned systems. Therefore, this paper designs an edge–end–cloud integrated multi-unmanned system payload management and computing platform (IMUC) that combines edge, end, and cloud computing. By utilizing the immense computational power and storage resources of the cloud, the platform enables cloud-based online task management and data acquisition visualization for multi-unmanned systems. The platform addresses the high complexity of task execution in various scenarios by considering factors such as space, time, and task completion. It performs data collection tasks at the end terminal, optimizes processing at the edge, and finally transmits the data to the cloud for visualization. The platform seamlessly integrates edge computing, terminal devices, and cloud resources, achieving efficient resource utilization and distributed execution of computing tasks. Test results demonstrate that the platform can successfully complete the entire process of payload management and computation for multi-unmanned systems in complex scenarios. The platform exhibits low response time and produces normal routing results, greatly enhancing operational efficiency in the field. These test results validate the practicality and reliability of the platform, providing a new approach for efficient operations of multi-unmanned systems in surveying and mapping requirements, combining cloud computing with the construction of smart cities.

Funder

the National Key Technologies Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3