Quality and Efficiency of Coupled Iterative Coverage Path Planning for the Inspection of Large Complex 3D Structures

Author:

Liu Xiaodi1,Piao Minnan2ORCID,Li Haifeng2,Li Yaohua1,Lu Biao3

Affiliation:

1. College of Transportation, Science and Engineering, Civil Aviation University of China, Tianjin 300300, China

2. College of Computer, Science and Technology, Civil Aviation University of China, Tianjin 300300, China

3. College of Artificial Intelligence, Nankai University, Tianjin 300350, China

Abstract

To enable unmanned aerial vehicles to generate coverage paths that balance inspection quality and efficiency when performing three-dimensional inspection tasks, we propose a quality and efficiency coupled iterative coverage path planning (QECI-CPP) method. First, starting from a cleaned and refined mesh model, this was segmented into narrow and normal spaces, each with distinct constraint settings. During the initialization phase of viewpoint generation, factors such as image resolution and orthogonality degree were considered to enhance the inspection quality along the path. Then, the optimization objective was designed to simultaneously consider inspection quality and efficiency, with the relative importance of these factors adjustable according to specific task requirements. Through iterative adjustments and optimizations, the coverage path was continuously refined. In numerical simulations, the proposed method was compared with three other classic methods, evaluated across five aspects: image resolution, orthogonality degree, path distance, computation time, and total path cost. The comparative simulation results show that the QECI-CPP achieves maximum image resolution and orthogonality degree while maintaining inspection efficiency within a moderate computation time, demonstrating the effectiveness of the proposed method. Additionally, the flexibility of the planned path is validated by adjusting the weight coefficient in the optimized objective function.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3