Performance Analysis of Distributed Reconfigurable-Intelligent-Surface-Assisted Air–Ground Fusion Networks with Non-Ideal Environments

Author:

Yao Yuanyuan12ORCID,Liu Qi12,Yu Kan34,Huang Sai4,Yue Xinwei12

Affiliation:

1. Key Laboratory of Information and Communication Systems, Ministry of Information Industry, Beijing Information Science and Technology University, Beijing 100101, China

2. Key Laboratory of Modern Measurement Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100101, China

3. Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China

4. Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

This paper investigates the impact of non-ideal environmental factors, including hardware impairments, random user distributions, and imperfect channel conditions, on the performance of distributed reconfigurable intelligent surface (RIS)-assisted air–ground fusion networks. Using an unmanned aerial vehicle (UAV) as an aerial base station, performance metrics such as the outage probability, ergodic rate, and energy efficiency are analyzed with Nakagami-m fading channels. To highlight the superiority of RIS-assisted air–ground networks, comparisons are made with point-to-point links, amplify-and-forward (AF) relay scenarios, conventional centralized RIS deployment, and fusion networks without hardware impairments. Monte Carlo simulations are employed to validate theoretical analyses, demonstrating that in non-ideal environmental conditions, distributed RIS-assisted air–ground fusion networks outperform benchmark scenarios. This model offers some insights into the improvement of wireless communication networks in emerging smart cities.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Project of Cultivation for young top-notch Talents of Beijing Municipal Institutions

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3