Rockfall Analysis from UAV-Based Photogrammetry and 3D Models of a Cliff Area

Author:

Cirillo Daniele123ORCID,Zappa Michelangelo4,Tangari Anna Chiara25ORCID,Brozzetti Francesco123,Ietto Fabio6ORCID

Affiliation:

1. Laboratorio di Geologia Strutturale Cartografia e Modellazione Geologica, DiSPuTer, Università G. d’Annunzio, 66100 Chieti, Italy

2. Dipartimento DiSPuTer, Università G. d’Annunzio, 66100 Chieti, Italy

3. CRUST Centro InteRUniversitario per L’analisi Sismotettonica Tridimensionale, 66100 Chieti, Italy

4. Independent Researcher, 87030 Falconara Albanese, Italy

5. Dipartimento di Ingegneria Civile, Università della Calabria, 87036 Arcavacata di Rende, Italy

6. Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende, Italy

Abstract

The application of Unmanned Aerial Vehicles (UAVs), commonly known as drones, in geological, geomorphological, and geotechnical studies has gained significant attention due to their versatility and capability to capture high-resolution data from challenging terrains. This research uses drone-based high-resolution photogrammetry to assess the geomechanical properties and rockfall potential of several rock scarps within a wide area of 50 ha. Traditional methods for evaluating geomechanical parameters on rock scarps involve time-consuming field surveys and measurements, which can be hazardous in steep and rugged environments. By contrast, drone photogrammetry offers a safer and more efficient approach, allowing for the creation of detailed 3D models of a cliff area. These models provide valuable insights into the topography, geological structures, and potential failure mechanisms. This research processed the acquired drone imagery using advanced geospatial software to generate accurate orthophotos and digital elevation models. These outputs analysed the key factors contributing to rockfall triggering, including identifying discontinuities, joint orientations, kinematic analysis of failures, and fracturing frequency. More than 8.9 × 107 facets, representing discontinuity planes, were recognised and analysed for the kinematic failure modes, showing that direct toppling is the most abundant rockfall type, followed by planar sliding and flexural toppling. Three different fracturation grades were also identified based on the number of planar facets recognised on rock surfaces. The approach used in this research contributes to the ongoing development of fast, practical, low-cost, and non-invasive techniques for geomechanical assessment on vertical rock scarps. In particular, the results show the effectiveness of drone-based photogrammetry for rapidly collecting comprehensive geomechanical data valid to recognise the prone areas to rockfalls in vast regions.

Publisher

MDPI AG

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3