Joint Resource Scheduling of the Time Slot, Power, and Main Lobe Direction in Directional UAV Ad Hoc Networks: A Multi-Agent Deep Reinforcement Learning Approach

Author:

Liang Shijie12ORCID,Zhao Haitao2ORCID,Zhou Li2,Wang Zhe2,Cao Kuo2,Wang Junfang1

Affiliation:

1. The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China

2. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

Directional unmanned aerial vehicle (UAV) ad hoc networks (DUANETs) are widely applied due to their high flexibility, strong anti-interference capability, and high transmission rates. However, within directional networks, complex mutual interference persists, necessitating scheduling of the time slot, power, and main lobe direction for all links to improve the transmission performance of DUANETs. To ensure transmission fairness and the total count of transmitted data packets for the DUANET under dynamic data transmission demands, a scheduling algorithm for the time slot, power, and main lobe direction based on multi-agent deep reinforcement learning (MADRL) is proposed. Specifically, modeling is performed with the links as the core, optimizing the time slot, power, and main lobe direction variables for the fairness-weighted count of transmitted data packets. A decentralized partially observable Markov decision process (Dec-POMDP) is constructed for the problem. To process the observation in Dec-POMDP, an attention mechanism-based observation processing method is proposed to extract observation features of UAVs and their neighbors within the main lobe range, enhancing algorithm performance. The proposed Dec-POMDP and MADRL algorithms enable distributed autonomous decision-making for the resource scheduling of time slots, power, and main lobe directions. Finally, the simulation and analysis are primarily focused on the performance of the proposed algorithm and existing algorithms across varying data packet generation rates, different main lobe gains, and varying main lobe widths. The simulation results show that the proposed attention mechanism-based MADRL algorithm enhances the performance of the MADRL algorithm by 22.17%. The algorithm with the main lobe direction scheduling improves performance by 67.06% compared to the algorithm without the main lobe direction scheduling.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Hunan Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3