Intelligent Parcel Delivery Scheduling Using Truck-Drones to Cut down Time and Cost

Author:

Farrag Tamer Ahmed1,Askr Heba2ORCID,Elhosseini Mostafa A.34ORCID,Hassanien Aboul Ella5ORCID,Farag Mai A.6

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia

2. Information Systems Department, Faculty of Computers and Artificial Intelligence, University of Sadat City, Sadat City 32958, Egypt

3. College of Computer Science and Engineering, Taibah University, Yanbu 46419, Saudi Arabia

4. Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35511, Egypt

5. Faculty of Computers and Artificial Intelligence, Cairo University, Giza 12518, Egypt

6. Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt

Abstract

In the evolving landscape of logistics, drone technology presents a solution to the challenges posed by traditional ground-based deliveries, such as traffic congestion and unforeseen road closures. This research addresses the Truck–Drone Delivery Problem (TDDP), wherein a truck collaborates with a drone, acting as a mobile charging and storage unit. Although the Traveling Salesman Problem (TSP) can represent the TDDP, it becomes computationally burdensome when nodes are dynamically altered. Motivated by this limitation, our study’s primary objective is to devise a model that ensures swift execution without compromising the solution quality. We introduce two meta-heuristics: the Strawberry Plant, which refines the initial truck schedule, and Genetic Algorithms, which optimize the combined truck–drone schedule. Using “Dataset 1” and comparing with the Multi-Start Tabu Search (MSTS) algorithm, our model targeted costs to remain within 10% of the optimum and aimed for a 73% reduction in the execution time. Of the 45 evaluations, 37 met these cost parameters, with our model surpassing MSTS in eight scenarios. In contrast, using “Dataset 2” against the CPLEX solver, our model optimally addressed all 810 experiments, while CPLEX managed only 90 within the prescribed time. For 20-customer scenarios and more, CPLEX encountered memory limitations. Notably, when both methods achieved optimal outcomes, our model’s computational efficiency exceeded CPLEX by a significant margin. As the customer count increased, so did computational challenges, indicating the importance of refining our model’s strategies. Overall, these findings underscore our model’s superiority over established solvers like CPLEX and the economic advantages of drone-assisted delivery systems.

Funder

Deanship of Graduate Studies and Scientific Research, Taif University

Tamer Ahmed Farrag

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3