Joint Trajectory Design and Resource Optimization in UAV-Assisted Caching-Enabled Networks with Finite Blocklength Transmissions

Author:

Yang Yang1ORCID,Gursoy Mustafa1

Affiliation:

1. Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY 13244, USA

Abstract

In this study, we design and analyze a reliability-oriented downlink wireless network assisted by unmanned aerial vehicles (UAVs). This network employs non-orthogonal multiple access (NOMA) transmission and finite blocklength (FBL) codes. In the network, ground user equipments (GUEs) request content from a remote base station (BS), and there are no direct connections between the BS and the GUEs. To address this, we employ a UAV with a limited caching capacity to assist the BS in completing the communication. The UAV can either request uncached content from the BS and then serve the GUEs or directly transmit cached content to the GUEs. In this paper, we first introduce the decoding error rate within the FBL regime and explore caching policies for the UAV. Subsequently, we formulate an optimization problem aimed at minimizing the average maximum end-to-end decoding error rate across all GUEs while considering the coding length and maximum UAV transmission power constraints. We propose a two-step alternating optimization scheme embedded within a deep deterministic policy gradient (DDPG) algorithm to jointly determine the UAV trajectory and transmission power allocations, as well as blocklength of downloading phase, and our numerical results show that the combined learning-optimization algorithm efficiently addresses the considered problem. In particular, it is shown that a well-designed UAV trajectory, relaxing the FBL constraint, increasing the cache size, and providing a higher UAV transmission power budget all lead to improved performance.

Funder

National Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3