Multi-UAV Formation Path Planning Based on Compensation Look-Ahead Algorithm

Author:

Sun Tianye1ORCID,Sun Wei1,Sun Changhao2ORCID,He Ruofei3

Affiliation:

1. School of Aerospace Science and Technology, Xidian University, Xi’an 710071, China

2. Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China

3. 365th Research Institute, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

This study primarily studies the shortest-path planning problem for unmanned aerial vehicle (UAV) formations under uncertain target sequences. In order to enhance the efficiency of collaborative search in drone clusters, a compensation look-ahead algorithm based on optimizing the four-point heading angles is proposed. Building upon the receding-horizon algorithm, this method introduces the heading angles of adjacent points to approximately compensate and decouple the triangular equations of the optimal trajectory, and a general formula for calculating the heading angles is proposed. The simulation data indicate that the model using the compensatory look forward algorithm exhibits a maximum improvement of 12.9% compared to other algorithms. Furthermore, to solve the computational complexity and sample size requirements for optimal solutions in the Dubins multiple traveling salesman model, a path-planning model for multiple UAV formations is introduced based on the Euclidean traveling salesman problem (ETSP) pre-allocation. By pre-allocating sub-goals, the model reduces the computational scale of individual samples while maintaining a constant sample size. The simulation results show an 8.4% and 17.5% improvement in sparse regions for the proposed Euclidean Dubins traveling salesman problem (EDTSP) model for takeoff from different points.

Funder

National Natural Science Foundation of China

Shaanxi Key R&D Plan Key Industry Innovation Chain Project

China College Innovation Fund of Production, Education and Research

Xi’an Science and Technology Plan Project

Publisher

MDPI AG

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3