DFly: A Publicly Auditable and Privacy-Preserving UAS Traffic Management System on Blockchain

Author:

Baptista Frederico1,Dehez-Clementi Marina1ORCID,Detchart Jonathan1ORCID

Affiliation:

1. ISAE-SUPAERO, Université de Toulouse, 31055 Toulouse, France

Abstract

The integration of Unmanned Aircraft Systems (UASs) into the current airspace poses significant challenges in terms of safety, security, and operability. As an example, in 2019, the European Union defined a set of rules to support the digitalization of UAS traffic management (UTM) systems and services, namely the U-Space regulations. Current propositions opted for a centralized and private model, concentrated around governmental authorities (e.g., AlphaTango provides the Registration service and depends on the French government). In this paper, we advocate in favor of a more decentralized and transparent model in order to improve safety, security, operability among UTM stakeholders, and legal compliance. As such, we propose DFly, a publicly auditable and privacy-preserving UAS traffic management system on Blockchain, with two initial services: Registration and Flight Authorization. We demonstrate that the use of a blockchain guarantees the public auditability of the two services and corresponding service providers’ actions. In addition, it facilitates the comprehensive and distributed monitoring of airspace occupation and the integration of additional functionalities (e.g., the creation of a live UAS tracker). The combination with zero-knowledge proofs enables the deployment of an automated, distributed, transparent, and privacy-preserving Flight Authorization service, performed on-chain thanks to the blockchain logic. In addition to its construction, this paper details the instantiation of the proposed UTM system with the Ethereum Sepolia’s testnet and the Groth16 ZK-SNARK protocol. On-chain (gas cost) and off-chain (execution time) performance analyses confirm that the proposed solution is a viable and efficient alternative in the spirit of digitalization and offers additional security guarantees.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3