Multiple UAVs Networking Oriented Consistent Cooperation Method Based on Adaptive Arithmetic Sine Cosine Optimization

Author:

Huang He12,Li Dongqiang12,Niu Mingbo3ORCID,Xie Feiyu12,Miah Md Sipon345ORCID,Gao Tao6,Wang Huifeng1

Affiliation:

1. School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China

2. Xi’an Key Laboratory of Intelligent Expressway Information Fusion and Control, Chang’an University, Xi’an 710064, China

3. IVR Low-Carbon Research Institute, School of Energy and Electrical Engineering, Chang’an University, Xi’an 710064, China

4. Department of Signal Theory and Communications, University Carlos III of Madrid, Leganes, 28911 Madrid, Spain

5. Department of Information and Communication Technology, Islamic University, Kushtia 7003, Bangladesh

6. School of Information Engineering, Chang’an University, Xi’an 710064, China

Abstract

With the rapid development of the Internet of Things, the Internet of Vehicles (IoV) has quickly drawn considerable attention from the public. The cooperative unmanned aerial vehicles (UAVs)-assisted vehicular networks, as a part of IoV, has become an emerging research spot. Due to the significant limitations of the application and service of a single UAV-assisted vehicular networks, efforts have been put into studying the use of multiple UAVs to assist effective vehicular networks. However, simply increasing the number of UAVs can lead to difficulties in information exchange and collisions caused by external interference, thereby affecting the security of the entire cooperation and networking. To address the above problems, multiple UAV cooperative formation is increasingly receiving attention. UAV cooperative formation can not only save energy loss but also achieve synchronous cooperative motion through information communication between UAVs, prevent collisions and other problems between UAVs, and improve task execution efficiency. A multi-UAVs cooperation method based on arithmetic optimization is proposed in this work. Firstly, a complete mechanical model of unmanned maneuvering was obtained by combining acceleration limitations. Secondly, based on the arithmetic sine and cosine optimization algorithm, the mathematical optimizer was used to accelerate the function transfer. Sine and cosine strategies were introduced to achieve a global search and enhance local optimization capabilities. Finally, in obtaining the precise position and direction of multi-UAVs to assist networking, the cooperation method was formed by designing the reference controller through the consistency algorithm. Experimental studies were carried out for the multi-UAVs’ cooperation with the particle model, combined with the quadratic programming problem-solving technique. The results show that the proposed quadrotor dynamic model provides basic data for cooperation position adjusting, and our simplification in the model can reduce the amount of calculations for the feedback and the parameter changes during the cooperation. Moreover, combined with a reference controller, the UAVs achieve the predetermined cooperation by offering improved navigation speed, task execution efficiency, and cooperation accuracy. Our proposed multi-UAVs cooperation method can improve the quality of service significantly on the UAV-assisted vehicular networks.

Funder

National Natural Science Foundation of China

Project of the Ministry of Science and Technology of China

Innovation Creative Centre Project of Shaanxi Province

special fund for the basic scientific research business expenses of Chang’an University Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3