Optimization of Urban Target Area Accessibility for Multi-UAV Data Gathering Based on Deep Reinforcement Learning

Author:

Jin Zhengmiao1,Chen Renxiang2,Wu Ke1ORCID,Yu Tengwei2,Fu Linghua1

Affiliation:

1. School of Aeronautics, Chongqing Jiaotong University, Chongqing 404100, China

2. School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 404100, China

Abstract

Unmanned aerial vehicles (UAVs) are increasingly deployed to enhance the operational efficiency of city services. However, finding optimal solutions for the gather–return task pattern under dynamic environments and the energy constraints of UAVs remains a challenge, particularly in dense high-rise building areas. This paper investigates the multi-UAV path planning problem, aiming to optimize solutions and enhance data gathering rates by refining exploration strategies. Initially, for the path planning problem, a reinforcement learning (RL) technique equipped with an environment reset strategy is adopted, and the data gathering problem is modeled as a maximization problem. Subsequently, to address the limitations of stationary distribution in indicating the short-term behavioral patterns of agents, a Time-Adaptive Distribution is proposed, which evaluates and optimizes the policy by combining the behavioral characteristics of agents across different time scales. This approach is particularly suitable for the early stages of learning. Furthermore, the paper describes and defines the “Narrow-Elongated Path” Problem (NEP-Problem), a special spatial configuration in RL environments that hinders agents from finding optimal solutions through random exploration. To address this, a Robust-Optimization Exploration Strategy is introduced, leveraging expert knowledge and robust optimization to ensure UAVs can deterministically reach and thoroughly explore any target areas. Finally, extensive simulation experiments validate the effectiveness of the proposed path planning algorithms and comprehensively analyze the impact of different exploration strategies on data gathering efficiency.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3