Suboptimal Trajectory Planning Technique in Real UAV Scenarios with Partial Knowledge of the Environment

Author:

Gelli Matilde1ORCID,Bigazzi Luca1ORCID,Boni Enrico1ORCID,Basso Michele1ORCID

Affiliation:

1. Department of Information Engineering, University of Florence, Via Santa Marta 3, 50139 Firenze, Italy

Abstract

In recent years, the issue of trajectory planning for autonomous unmanned aerial vehicles (UAVs) has received significant attention due to the rising demand for these vehicles across various applications. Despite advancements, real-time trajectory planning remains computationally demanding, particularly with the inclusion of 3D localization using computer vision or advanced sensors. Consequently, much of the existing research focuses on semi-autonomous systems, which rely on ground assistance through the use of external sensors (motion capture systems) and remote computing power. This study addresses the challenge by proposing a fully autonomous trajectory planning solution. By introducing a real-time path planning algorithm based on the minimization of the snap, the optimal trajectory is dynamically recalculated as needed. Evaluation of the algorithm’s performance is conducted in an unknown real-world scenario, utilizing both simulations and experimental data. The algorithm was implemented in MATLAB and subsequently translated to C++ for onboard execution on the drone.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3