Large-Scale Solar-Powered UAV Attitude Control Using Deep Reinforcement Learning in Hardware-in-Loop Verification

Author:

Yan Yongzhao12,Cao Huazhen123,Zhang Boyang4,Ni Wenjun12,Wang Bo15ORCID,Ma Xiaoping12

Affiliation:

1. National Key Laboratory of Science and Technology on Advanced Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China

2. School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of UAV Emergency Rescue Technology, Ministry of Emergency Management, Beijing 102202, China

4. Beijing Blue Sky Science and Technology Innovation Research Center, Beijing 100190, China

5. Qingdao Institute of Aeronautical Technology, Qingdao 266000, China

Abstract

Large-scale solar-powered unmanned aerial vehicles possess the capacity to perform long-term missions at different altitudes from near-ground to near-space, and the huge spatial span brings strict disciplines for its attitude control such as aerodynamic nonlinearity and environmental disturbances. The design efficiency and control performance are limited by the gain scheduling of linear methods in a way, which are widely used on such aircraft at present. So far, deep reinforcement learning has been demonstrated to be a promising approach for training attitude controllers for small unmanned aircraft. In this work, a low-level attitude control method based on deep reinforcement learning is proposed for solar-powered unmanned aerial vehicles, which is able to interact with high-fidelity nonlinear systems to discover optimal control laws and can receive and track the target attitude input with an arbitrary high-level control module. Considering the risks of field flight experiments, a hardware-in-loop simulation platform is established that connects the on-board avionics stack with the neural network controller trained in a digital environment. Through flight missions under different altitudes and parameter perturbation, the results show that the controller without re-training has comparable performance with the traditional PID controller, even despite physical delays and mechanical backlash.

Funder

Taishan Scholars Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3