Optimization-Based Control for a Large-Scale Electrical Vertical Take-Off and Landing during an Aircraft’s Vertical Take-Off and Landing Phase with Variable-Pitch Propellers

Author:

Duan Luyuhang1ORCID,He Yunhan1,Fan Li12,Qiu Wei1,Wen Guangwei2,Xu Yun1

Affiliation:

1. College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

2. Huzhou Institute, Zhejiang University, Huzhou 313000, China

Abstract

The UAV industry has witnessed an unprecedented boom in recent years. Among various kinds of UAV platforms, the vertical take-off and landing (VTOL) aircraft with fixed-wing configurations has received more and more attention due to its flexibility and long-distance flying abilities. However, due to the fact that the advance ratio of regular propeller systems during the cruise phase is significantly higher than that during the VTOL phase, a variable-pitch propeller system is proposed and designed which can be applied without additional propulsion mechanisms during both flying stages. Thus, a VTOL aircraft platform is proposed based on the propulsion system constructed of variable-pitch propellers, and appropriate control manners are precisely analyzed, especially during its VTOL phase. As a basic propulsion system, a nonlinear model for variable-pitch propellers is constructed, and an optimization-based control allocation module is developed because of its multi-solution and high-order characteristics. Finally, the objective function is designed according to the stability and energy consumption requirements. Simulation experiments demonstrate that the proposed controller is able to lower energy consumption and maintain the stability of the aircraft while tracking aggressive trajectories for large-scale VTOLs with noises at the same time.

Funder

Intelligent Aerospace System Team of the Zhejiang Provincial Leading Innovative Teams Program, Science and Technology of Zhejiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3