Review of Crop Phenotyping in Field Plot Experiments Using UAV-Mounted Sensors and Algorithms

Author:

Tanaka Takashi Sonam Tashi1ORCID,Wang Sheng1,Jørgensen Johannes Ravn1ORCID,Gentili Marco1,Vidal Armelle Zaragüeta2,Mortensen Anders Krogh3,Acharya Bharat Sharma4,Beck Brittany Deanna1,Gislum René1ORCID

Affiliation:

1. Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark

2. Departamento Ciencias, Instituto de Innovación y Sostenibilidad en la Cadena Agroalimentaria (IS-FOOD), Universidad Pública de Navarra, 31006 Pamplona, Spain

3. The AI Lab, 8210 Aarhus V, Denmark

4. Rodale Institute, Southeast Organic Center, Chattahoochee Hills, GA 30268, USA

Abstract

The phenotyping of field crops quantifies a plant’s structural and physiological characteristics to facilitate crop breeding. High-throughput unmanned aerial vehicle (UAV)-based remote sensing platforms have been extensively researched as replacements for more laborious and time-consuming manual field phenotyping. This review aims to elucidate the advantages and challenges of UAV-based phenotyping techniques. This is a comprehensive overview summarizing the UAV platforms, sensors, and data processing while also introducing recent technological developments. Recently developed software and sensors greatly enhance the accessibility of UAV-based phenotyping, and a summary of recent research (publications 2019–2024) provides implications for future research. Researchers have focused on integrating multiple sensing data or utilizing machine learning algorithms, such as ensemble learning and deep learning, to enhance the prediction accuracies of crop physiological traits. However, this approach will require big data alongside laborious destructive measurements in the fields. Future research directions will involve standardizing the process of merging data from multiple field experiments and data repositories. Previous studies have focused mainly on UAV technology in major crops, but there is a high potential in minor crops or cropping systems for future sustainable crop production. This review can guide new practitioners who aim to implement and utilize UAV-based phenotyping.

Funder

Innovationskraft 2023

Erasmus+

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3