Research on Cooperative Obstacle Avoidance Decision Making of Unmanned Aerial Vehicle Swarms in Complex Environments under End-Edge-Cloud Collaboration Model

Author:

Zhao Longqian1,Chen Bing1ORCID,Hu Feng1

Affiliation:

1. School of Computer, Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Obstacle avoidance in UAV swarms is crucial for ensuring the stability and safety of cluster flights. However, traditional methods of swarm obstacle avoidance often fail to meet the requirements of frequent spatiotemporal dynamic changes in UAV swarms, especially in complex environments such as forest firefighting, mine monitoring, and earthquake disaster relief. Consequently, the trained obstacle avoidance strategy differs from the expected or optimal obstacle avoidance scheme, leading to decision bias. To solve this problem, this paper proposes a method of UAV swarm obstacle avoidance decision making based on the end-edge-cloud collaboration model. In this method, the UAV swarm generates training data through environmental interaction. Sparse rewards are converted into dense rewards, considering the complex environmental state information and limited resources, and the actions of the UAVs are evaluated according to the reward values, to accurately assess the advantages and disadvantages of each agent’s actions. Finally, the training data and evaluation signals are utilized to optimize the parameters of the neural network through strategy-updating operations, aiming to improve the decision-making strategy. The experimental results demonstrate that the UAV swarm obstacle avoidance method proposed in this paper exhibits high obstacle avoidance efficiency, swarm stability, and completeness compared to other obstacle avoidance methods.

Funder

General Program of National Natural Science Foundation of China

A3 Program of National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3