UAV Confrontation and Evolutionary Upgrade Based on Multi-Agent Reinforcement Learning

Author:

Deng Xin12,Dong Zhaoqi1,Ding Jishiyu3

Affiliation:

1. Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China

2. Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China

3. Intelligent Science Technology Academy Limited of CASIC, Beijing 100041, China

Abstract

Unmanned aerial vehicle (UAV) confrontation scenarios play a crucial role in the study of agent behavior selection and decision planning. Multi-agent reinforcement learning (MARL) algorithms serve as a universally effective method guiding agents toward appropriate action strategies. They determine subsequent actions based on the state of the agents and the environmental information that the agents receive. However, traditional MARL settings often result in one party agent consistently outperforming the other party due to superior strategies, or both agents reaching a strategic stalemate with no further improvement. To solve this issue, we propose a semi-static deep deterministic policy gradient algorithm based on MARL. This algorithm employs a centralized training and decentralized execution approach, dynamically adjusting the training intensity based on the comparative strengths and weaknesses of both agents’ strategies. Experimental results show that during the training process, the strategy of the winning team drives the losing team’s strategy to upgrade continuously, and the relationship between the winning team and the losing team keeps changing, thus achieving mutual improvement of the strategies of both teams. The semi-static reinforcement learning algorithm improves the win-loss relationship conversion by 8% and reduces the training time by 40% compared with the traditional reinforcement learning algorithm.

Funder

National Natural Science Foundation of China under Grant

Young Elite Scientists Sponsorship Program by CAST under Grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3