Development and Field Testing of a Wireless Data Relay System for Amphibious Drones

Author:

Suetsugu Atsushi1,Madokoro Hirokazu2ORCID,Nagayoshi Takeshi1,Kikuchi Takero3,Watanabe Shunsuke1,Inoue Makoto1ORCID,Yoshida Makoto4,Osawa Hitoshi4,Kurisawa Nobumitsu4,Kiguchi Osamu1

Affiliation:

1. Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan

2. Faculty of Software and Information Science, Iwate Prefectural University, Takizawa 020-0693, Japan

3. Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan

4. Akita Prefectural Center of Analytical Chemistry Ltd., Akita 010-8728, Japan

Abstract

Amphibious (air and water) drones, capable of both aerial and aquatic operations, have the potential to provide valuable drone applications in aquatic environments. However, the limited range of wireless data transmission caused by the low antenna height on water and reflection from the water surface (e.g., 45 m for vertical half-wave dipole antennas with the XBee S2CTM, estimated using the two-ray ground reflection model) persists as a formidable challenge for amphibious systems. To overcome this difficulty, we developed a wireless data relay system for amphibious drones using the mesh-type networking functions of the XBeeTM. We then conducted field tests of the developed system in a large marsh pond to provide experimental evidence of the efficiency of the multiple-drone network in amphibious settings. In these tests, hovering relaying over water was attempted for extension and bypassing obstacles using the XBee S2CTM (6.3 mW, 2.4 GHz). During testing, the hovering drone (<10 m height from the drone controller) successfully relayed water quality data from the transmitter to the receiver located approximately 757 m away, but shoreline vegetation decreased the reachable distance. A bypassing relay test for vegetation indicated the need to confirm a connected path formed by pair(s) of mutually observable drones.

Funder

Akita Prefectural University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3