Intelligent Packet Priority Module for a Network of Unmanned Aerial Vehicles Using Manhattan Long Short-Term Memory

Author:

Prakoso Dino Budi1,Windiatmaja Jauzak Hussaini1ORCID,Mulyanto Agus1,Sari Riri Fitri1ORCID,Nordin Rosdiadee2ORCID

Affiliation:

1. Department of Electrical Engineering, University of Indonesia, Depok 16424, Indonesia

2. Department of Engineering, School of Engineering and Technology, Sunway University, 5, Jalan Universiti, Bandar Sunway 47500, Selangor, Malaysia

Abstract

Unmanned aerial vehicles (UAVs) are becoming more common in wireless communication networks. Using UAVs can lead to network problems. An issue arises when the UAVs function in a network-access-limited environment with nodes causing interference. This issue could potentially hinder UAV network connectivity. This paper introduces an intelligent packet priority module (IPPM) to minimize network latency. This study analyzed Network Simulator–3 (NS-3) network modules utilizing Manhattan long short-term memory (MaLSTM) for packet classification of critical UAV, ground control station (GCS), or interfering nodes. To minimize network latency and packet delivery ratio (PDR) issues caused by interfering nodes, packets from prioritized nodes are transmitted first. Simulation results and evaluation show that our proposed intelligent packet priority module (IPPM) method outperformed previous approaches. The proposed IPPM based on MaLSTM implementation for the priority packet module led to a lower network delay and a higher packet delivery ratio. The performance of the IPPM averaged 62.2 ms network delay and 0.97 packet delivery ratio (PDR). The MaLSTM peaked at 97.5% accuracy. Upon further evaluation, the stability of LSTM Siamese models was observed to be consistent across diverse similarity functions, including cosine and Euclidean distances.

Funder

Faculty of Engineering, Universitas Indonesia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3