Affiliation:
1. Department of Computer Science and Engineering, Qatar University, Doha 2713, Qatar
2. Department of Electrical and Computer Engineering, Tennessee Technological University, Cookeville, TN 38505, USA
Abstract
This paper investigated the use of unmanned aerial vehicles (UAVs) for the delivery of critical goods to remote areas in the absence of network connectivity. Under such conditions, it is important to track the delivery process and record the transactions in a delay-tolerant fashion so that this information can be recovered after the UAV’s return to base. We propose a novel framework that combines the strengths of cipher block chaining, physical layer security, and symmetric and asymmetric encryption techniques in order to safely encrypt the transaction logs of remote delivery operations. The proposed approach is shown to provide high security levels, making the keys undetectable, in addition to being robust to attacks. Thus, it is very useful in drone systems used for logistics and autonomous goods delivery to multiple destinations. This is particularly important in health applications, e.g., for vaccine transmissions, or in relief and rescue operations.