Affiliation:
1. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
2. Shenzhen Keweitai Enterprise Co., Ltd., Shenzhen 518126, China
Abstract
In scenarios where the global navigation satellite system is unavailable, unmanned aerial vehicles (UAVs) can employ visual algorithms to process aerial images. These images are integrated with satellite maps and digital elevation models (DEMs) to achieve global localization. To address the localization challenge in unfamiliar areas devoid of prior data, an iterative computation-based localization framework is commonly used. This framework iteratively refines its calculations using multiple observations from a downward-facing camera to determine an accurate global location. To improve the rate of convergence for localization, we introduced an innovative observation model. We derived a terrain descriptor from the images captured by a forward-facing camera and integrated it as supplementary observation into a point-mass filter (PMF) framework to enhance the confidence of the observation likelihood distribution. Furthermore, within this framework, the methods for the truncation of the convolution kernel and that of the probability distribution were developed, thereby enhancing the computational efficiency and convergence rate, respectively. The performance of the algorithm was evaluated using real UAV flight sequences, a satellite map, and a DEM in an area measuring 7.7 km × 8 km. The results demonstrate that this method significantly accelerates the localization convergence during both takeoff and ascent phases as well as during cruise flight. Additionally, it increases localization accuracy and robustness in complex environments, such as areas with uneven terrain and ambiguous scenes. The method is applicable to the localization of UAVs in large-scale unknown scenarios, thereby enhancing the flight safety and mission execution capabilities of UAVs.
Funder
Key Research and Development Program of Shandong Province
Industry, University and Research Innovation Fund of China University