An Efficient Adjacent Frame Fusion Mechanism for Airborne Visual Object Detection

Author:

Ye Zecong12ORCID,Peng Yueping1,Liu Wenchao1,Yin Wenji1,Hao Hexiang1,Han Baixuan1,Zhu Yanfei1,Xiao Dong13

Affiliation:

1. School of Information Engineering, Engineering University of PAP, Xi’an 710086, China

2. The Youth Innovation Team of Shaanxi Universities, Xi’an 710086, China

3. Fujian Armed Police Corps, Fuzhou 350000, China

Abstract

With the continuous advancement of drone technology, drones are demonstrating a trend toward autonomy and clustering. The detection of airborne objects from the perspective of drones is critical for addressing threats posed by aerial targets and ensuring the safety of drones in the flight process. Despite the rapid advancements in general object detection technology in recent years, the task of object detection from the unique perspective of drones remains a formidable challenge. In order to tackle this issue, our research presents a novel and efficient mechanism for adjacent frame fusion to enhance the performance of visual object detection in airborne scenarios. The proposed mechanism primarily consists of two modules: a feature alignment fusion module and a background subtraction module. The feature alignment fusion module aims to fuse features from aligned adjacent frames and key frames based on their similarity weights. The background subtraction module is designed to compute the difference between the foreground features extracted from the key frame and the background features obtained from the adjacent frames. This process enables a more effective enhancement of the target features. Given that this method can significantly enhance performance without a substantial increase in parameters and computational complexity, by effectively leveraging the feature information from adjacent frames, we refer to it as an efficient adjacent frame fusion mechanism. Experiments conducted on two challenging datasets demonstrate that the proposed method achieves superior performance compared to existing algorithms.

Funder

Comprehensive Research Project on Equipment

Independent Propositional Project of PAP

Basic Frontier Innovation Project at the Engineering University of PAP

Applied Research Advancement Project in Engineering University of PAP

Graduate Student Sponsored Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3