Studies on V-Formation and Echelon Flight Utilizing Flapping-Wing Drones

Author:

Martinez-Ponce Joseph1,Herkenhoff Brenden1ORCID,Aboelezz Ahmed1ORCID,Urban Cameron2ORCID,Armanini Sophie3ORCID,Raphael Elie4ORCID,Hassanalian Mostafa1ORCID

Affiliation:

1. Department of Mechanical Engineering, New Mexico Tech, Socorro, NM 87801, USA

2. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA

3. Department of Aeronautics, Imperial College London, London SW7 2AZ, UK

4. Gulliver Lab., UMR CNRS 7083, ESPCI Paris—PSL University, 75231 Paris, France

Abstract

V-Formation and echelon formation flights can be seen used by migratory birds throughout the year and have left many scientists wondering why they choose very specific formations. Experiments and analytical studies have been completed on the topic of the formation flight of birds and have shown that migratory birds benefit aerodynamically by using these formations. However, many of these studies were completed using fixed-wing models, while migratory birds both flap and glide while in formation. This paper reports the design of and experiments with a flapping-wing model rather than only a fixed-wing model. In order to complete this study, two different approaches were used to generate a flapping-wing model. The first was a computational study using an unsteady vortex–lattice (UVLM) solver to simulate flapping bodies. The second was an experimental design using both custom-built flapping mechanisms and commercially bought flapping drones. The computations and various experimental trials confirmed that there is an aerodynamic benefit from flying in either V-formation or echelon flight while flapping. It is shown that each row of birds experiences an increase in aerodynamic performance based on positioning within the formation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3