A Fusion Approach for UAV Onboard Flight Trajectory Management and Decision Making Based on the Combination of Enhanced A* Algorithm and Quadratic Programming

Author:

Sun Shuguang12,Wang Haolin1,Xu Yanzhi1,Wang Tianguang1,Liu Ruihua1,Chen Wantong1ORCID

Affiliation:

1. College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China

2. Laboratory of Technology and Equipment of Tianjin Urban Air Transportation System, Civil Aviation University of China, Tianjin 300300, China

Abstract

The rapid advancement of unmanned aerial vehicle (UAV) technologies has led to an increasing demand for UAV operations in low-altitude, high-density, and complex airspace such as mountains or urban areas. In order to handle complex scenarios and ensure flight safety for UAVs with different flight missions beyond visual line of sight in such environments, a fusion framework of onboard autonomous flight trajectory management and decision-making system using global strategical path planning and local tactical trajectory optimization combination is proposed in this paper. The global strategical path planning is implemented by an enhanced A* algorithm under the multi-constraint of UAV positioning uncertainty and obstacle density to improve the safety and cost-effectiveness. The local tactical trajectory optimization is realized using quadratic programming to ensure smoothness, kinematic feasibility, and obstacle avoidance of the planned trajectory in dynamic environments. Receding-horizon control is used to ensure the flight path and trajectory planning efficiently and seamlessly. To assess the performance of the system, a terrain database and a navigation system are employed for environment and navigation performance simulation. The experimental results confirm that the fusion approach can realize better safety and cost-effectiveness through path planning with kino-dynamic feasible trajectory optimization.

Funder

the State Key Program of National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3