Federated Reinforcement Learning for Collaborative Intelligence in UAV-Assisted C-V2X Communications

Author:

Gupta Abhishek1ORCID,Fernando Xavier1ORCID

Affiliation:

1. Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

Abstract

This paper applies federated reinforcement learning (FRL) in cellular vehicle-to-everything (C-V2X) communication to enable vehicles to learn communication parameters in collaboration with a parameter server that is embedded in an unmanned aerial vehicle (UAV). Different sensors in vehicles capture different types of data, contributing to data heterogeneity. C-V2X communication networks impose additional communication overhead in order to converge to a global model when the sensor data are not independent-and-identically-distributed (non-i.i.d.). Consequently, the training time for local model updates also varies considerably. Using FRL, we accelerated this convergence by minimizing communication rounds, and we delayed it by exploring the correlation between the data captured by various vehicles in subsequent time steps. Additionally, as UAVs have limited battery power, processing of the collected information locally at the vehicles and then transmitting the model hyper-parameters to the UAVs can optimize the available power consumption pattern. The proposed FRL algorithm updates the global model through adaptive weighing of Q-values at each training round. By measuring the local gradients at the vehicle and the global gradient at the UAV, the contribution of the local models is determined. We quantify these Q-values using nonlinear mappings to reinforce positive rewards such that the contribution of local models is dynamically measured. Moreover, minimizing the number of communication rounds between the UAVs and vehicles is investigated as a viable approach for minimizing delay. A performance evaluation revealed that the FRL approach can yield up to a 40% reduction in the number of communication rounds between vehicles and UAVs when compared to gross data offloading.

Funder

Natural Sciences and Engineering Research Council (NSERC) of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3