A Robust Strategy for UAV Autonomous Landing on a Moving Platform under Partial Observability

Author:

Aikins Godwyll1,Jagtap Sagar1,Nguyen Kim-Doang1ORCID

Affiliation:

1. Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA

Abstract

Landing a multi-rotor uncrewed aerial vehicle (UAV) on a moving target in the presence of partial observability, due to factors such as sensor failure or noise, represents an outstanding challenge that requires integrative techniques in robotics and machine learning. In this paper, we propose embedding a long short-term memory (LSTM) network into a variation of proximal policy optimization (PPO) architecture, termed robust policy optimization (RPO), to address this issue. The proposed algorithm is a deep reinforcement learning approach that utilizes recurrent neural networks (RNNs) as a memory component. Leveraging the end-to-end learning capability of deep reinforcement learning, the RPO-LSTM algorithm learns the optimal control policy without the need for feature engineering. Through a series of simulation-based studies, we demonstrate the superior effectiveness and practicality of our approach compared to the state-of-the-art proximal policy optimization (PPO) and the classical control method Lee-EKF, particularly in scenarios with partial observability. The empirical results reveal that RPO-LSTM significantly outperforms competing reinforcement learning algorithms, achieving up to 74% more successful landings than Lee-EKF and 50% more than PPO in flicker scenarios, maintaining robust performance in noisy environments and in the most challenging conditions that combine flicker and noise. These findings underscore the potential of RPO-LSTM in solving the problem of UAV landing on moving targets amid various degrees of sensor impairment and environmental interference.

Funder

National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3