Achieving Robust Learning Outcomes in Autonomous Driving with DynamicNoise Integration in Deep Reinforcement Learning

Author:

Shi Haotian1,Chen Jiale2ORCID,Zhang Feijun3,Liu Mingyang1,Zhou Mengjie4

Affiliation:

1. College of Instrumentation and Electrical Engineering, Jilin University, Jilin 130061, China

2. School of Communication Engineering, Jilin University, Jilin 130012, China

3. School of Transportation Science and Engineering, Jilin Jianzhu University, Changchun 130118, China

4. Department of Computer Science, University of Bristol, Bristol BS8 1QU, UK

Abstract

The advancement of autonomous driving technology is becoming increasingly vital in the modern technological landscape, where it promises notable enhancements in safety, efficiency, traffic management, and energy use. Despite these benefits, conventional deep reinforcement learning algorithms often struggle to effectively navigate complex driving environments. To tackle this challenge, we propose a novel network called DynamicNoise, which was designed to significantly boost the algorithmic performance by introducing noise into the deep Q-network (DQN) and double deep Q-network (DDQN). Drawing inspiration from the NoiseNet architecture, DynamicNoise uses stochastic perturbations to improve the exploration capabilities of these models, thus leading to more robust learning outcomes. Our experiments demonstrated a 57.25% improvement in the navigation effectiveness within a 2D experimental setting. Moreover, by integrating noise into the action selection and fully connected layers of the soft actor–critic (SAC) model in the more complex 3D CARLA simulation environment, our approach achieved an 18.9% performance gain, which substantially surpassed the traditional methods. These results confirmed that the DynamicNoise network significantly enhanced the performance of autonomous driving systems across various simulated environments, regardless of their dimensionality and complexity, by improving their exploration capabilities rather than just their efficiency.

Funder

Jilin Province Transportation Science and Technology project

Traffic engineering AI digital assistant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3