Spatial and Temporal Trends of Burnt Area in Angola: Implications for Natural Vegetation and Protected Area Management

Author:

Catarino Silvia,Romeiras Maria Manuel,Figueira RuiORCID,Aubard ValentineORCID,Silva João M. N.ORCID,Pereira José M. C.

Abstract

Fire is a key driver of natural ecosystems in Africa. However, human activity and climate change have altered fire frequency and severity, with negative consequences for biodiversity conservation. Angola ranks among the countries with the highest fire activity in sub-Saharan Africa. In this study, we investigated the spatial and temporal trends of the annual burnt area in Angola, from 2001 to 2019, and their association with terrestrial ecoregions, land cover, and protected areas. Based on satellite imagery, we analyzed the presence of significant trends in burnt area, applying the contextual Mann–Kendall test and the Theil–Sen slope estimator. Data on burnt areas were obtained from the moderate-resolution imaging spectroradiometer (MODIS) burnt area product and the analyses were processed in TerrSet. Our results showed that ca. 30% of the country’s area burned every year. The highest percentage of annual burnt area was found in northeast and southeast Angola, which showed large clusters of decreasing trends of burnt area. The clusters of increasing trends were found mainly in central Angola, associated with savannas and grasslands of Angolan Miombo woodlands. The protected areas of Cameia, Luengue-Luiana, and Mavinga exhibited large areas of decreasing trends of burnt area. Conversely, 23% of the Bicuar National Park was included in clusters of increasing trends. Distinct patterns of land cover were found in areas of significant trends, where the clusters of increasing trends showed a higher fraction of forest cover (80%) than the clusters of decreasing trends (55%). The documentation of burnt area trends was very important in tropical regions, since it helped define conservation priorities and management strategies, allowing more effective management of forests and fires in countries with few human and financial resources.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modelling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3