Measuring Electrical Responses during Acute Exposure of Roots and Rhizoids of Plants to Compounds Using a Flow-Through System

Author:

Cooper Robin LewisORCID,Thomas Matthew A.ORCID,Vascassenno Rachael M.,Brock Kaitlyn E.,McLetchie David NicholasORCID

Abstract

Monitoring electrical signals in plants allows the examination of their acute and chronic physiological changes and responses to stimuli. Understanding how plant roots/rhizoids respond to chemical cues in their environment will provide insight into how these structures acquire resources. Chronic exposure to L-glutamate alters root growth and is known to alter Ca2+ flux inside roots. The ionic flux can be detected by electrical changes. A rapid and relatively easy approach is presented to screen the electrical sensitivity of roots/rhizoids to compounds such as amino acids and known agonists/antagonists to receptors and ion channels. The approach uses a background-flow system of basal salt or water; then, the administered compounds are added to the roots/rhizoids while monitoring their electrical responses. As a proof of concept, the response to flow-through of glutamate (1 mM) was targeted at the root/rhizoids of three plants (Arabidopsis thaliana, Pisum sativum and Marchantia inflexa). Both Arabidopsis thaliana and Pisum sativum produced rapid depolarization upon exposure to glutamate, while M. inflexa did not show an electrical response. In some experiments, simultaneous recordings with impedance measures for acute changes and glass electrodes for chronic electrical potential changes were used. The effect of potassium chloride (300 mM) as a depolarizing stimulus produced responses in both P. sativum and M. inflexa. The protocol presented can be used to screen various compounds in a relatively rapid manner for responsiveness by the roots/rhizoids of plants.

Funder

Department of Biology, University of Kentucky

Publisher

MDPI AG

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Structural Biology,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3